

Separate MAP Adaptation of GMM Parameters for Forensic Voice Comparison on Limited Data

Chee Cheun Huang, Julien Epps and Ewald Enzinger
School of Electrical Engineering & Telecommunications, The University of
New South Wales, Sydney, Australia
National ICT Australia (NICTA), Sydney, Australia

Paradigm for evaluation of FVC evidence

- Likelihood-ratio framework:
 - Statement of strength of the evidence as an answer to a specific question

 $LR = \frac{p(E | H_p)}{p(E | H_d)}$

- Quantitative measurements, statistical models, databases representative of the relevant population
- Testing of validity and reliability under conditions reflecting those of the case

GMM-UBM statistical modeling (1)

- Gaussian mixture model-Universal background model (GMM-UBM) often used in automatic forensic-voice-comparison (FVC) systems
 - 1. Feature extraction
 - 2. Train GMM λ_{UBM} from sample of relevant population
 - \triangleright Model of the defence hypothesis H_d
 - 3. Adapt suspect speaker GMM λ_{sp} from UBM using maximum a-posteriori (MAP) adaptation
 - \triangleright Model of the prosecution hypothesis H_p
 - 4. Calculate score
 - 5. Transform score to likelihood ratio using calibration

GMM-UBM statistical modeling (2)

Gaussian mixture model-Universal background model system

Maximum a-posteriori (MAP) adaptation

- Initialize suspect GMM parameters $\lambda_{sp} = (w_{i,\mu_i}, \Sigma_i)_{i=1,...,M}$ from universal background model GMM λ_{UBM}
- Maximum a-posteriori (MAP) adaptation
 - Calculate occupancy and sufficient statistics:

$$E_{i}(\mathbf{x}_{t}) = \frac{1}{n_{i}} \sum_{t=1}^{T} \Pr(i \mid \mathbf{x}_{t}) \mathbf{x}_{t} \qquad \Pr(i \mid \mathbf{x}_{t}) = \frac{w_{i} p_{i}(\mathbf{x}_{t})}{\sum_{j=1}^{M} w_{j} p_{j}(\mathbf{x}_{t})}$$

$$E_{i}(\mathbf{x}_{t}^{2}) = \frac{1}{n_{i}} \sum_{t=1}^{T} \Pr(i \mid \mathbf{x}_{t}) \mathbf{x}_{t}^{2} \qquad n_{i} = \sum_{t=1}^{T} \Pr(i \mid \mathbf{x}_{t})$$

Update parameters:

$$\hat{\mathbf{w}}_{i} = \left[\alpha_{i} n_{i} / T + (1 - \alpha_{i}) \mathbf{w}_{i}\right] \gamma$$

$$\hat{\mathbf{\mu}}_{i} = \alpha_{i} E_{i}(\mathbf{x}_{t}) + (1 - \alpha_{i}) \mathbf{\mu}_{i}$$

$$\hat{\mathbf{\sigma}}_{i} = \alpha_{i} E_{i}(\mathbf{x}_{t}^{2}) + (1 - \alpha_{i}) (\mathbf{\sigma}_{i}^{2} + \mathbf{\mu}_{i}^{2}) - \hat{\mathbf{\mu}}_{i}^{2}$$

$$r \dots \text{ relevance factor}$$

Motivation

- Conventionally, only mean parameters adapted
 - Comparison of mean / variance / weight / full MAP adaptation
- Modification: Separate MAP adaptation
 - Often short suspect and/or offender samples
 - Problem of overfitting to suspect data
 - Adaptation that operates on fewer parameters than mean-only MAP adaptation?

Separate MAP Parameter Adaptation (1)

- Define N non-overlapping subsets of GMM mean parameters: $S_n \subset \{1,2,...,D\}, \ \bigcup_{n=1}^N S_n = \{1,2,...,D\}, \ \bigcap_{n=1}^N S_n = \emptyset$
- Each subset forms separate MAP system:
 - Perform mean-only MAP adaptation
 - Calculate occupancy and sufficient statistics
 - Update mean parameters
 - "Reset" parameters j not in S_n $\hat{\mu}_i(j) = \mu_i(j), \forall i$

Logistic regression fusion of all N separate MAP systems

Separate MAP Parameter Adaptation (2)

Data

- 60 female Standard Chinese speakers
- Split into 3 groups of 20 speakers
 - background set
 - development set
 - test set
- Information-exchange task over telephone
- High quality studio recordings
- Two recording sessions separated by 2–3 weeks

http://databases.forensic-voice-comparison.net/

Experimental setup

- GMM-UBM FVC system
 - Entire speech-active portion of recording
 - 16 MFCC + 16 delta (△) coefficients (D=32)
 - 512 Gaussian mixture components (UBM)
 - 3 MAP iterations
- Logistic regression calibration and fusion
- Metric of validity / accuracy:
 - log-likelihood ratio cost (C_{IIr}) metric:

$$C_{llr} = \frac{1}{2} \left[\frac{1}{N_{ss}} \sum_{i=1}^{N_{ss}} \log_2 \left(1 + \frac{1}{LR_{ss,i}} \right) + \frac{1}{N_{ds}} \sum_{j=1}^{N_{ds}} \log_2 \left(1 + LR_{ds,j} \right) \right]$$

Results: Comparisons of MAP variants

Individual systems	C_{llr}
Mean-only adaptation	0.196
Variance-only adaptation	0.221
Weight-only adaptation	0.848
Full adaptation	0.302

Fusion	C_{llr}
Fusion mean-only + variance-only adaptation	0.183
Fusion mean-only + weight-only adaptation	0.187
Fusion variance-only + weight-only adaptation	>1
Fusion mean-only + variance-only + weight-only adaptation	0.182

Fused system: 6.8% improvement over mean-only

Results: Separate MAP

- 2 Separate MAP (S-MAP) configurations:
 - Configuration 1: N=2 $S_1 = \{MFCC_1, ..., MFCC_{16}\}, S_2 = \{\Delta_1, ..., \Delta_{16}\}$
 - Configuration 2: N=32 $S_1=\{MFCC_1\},...,S_{16}=\{MFCC_{16}\},$ $S_{17}=\{\Delta_1\},...,S_{32}=\{\Delta_{16}\}$

	C_{llr}
Mean-only adaptation	0.056
S-MAP configuration 1	0.053
S-MAP configuration 2	0.042

Results: S-MAP v mean-only in limited data

Conclusion

- Mean / variance / weights / full MAP adaptation:
 - Mean-only adaptation: best individual performance
 - Fusion with other variants can improve performance
- Separate MAP adaptation can achieve substantial improvements compared with the traditional mean-only MAP adaptation
- For increasingly small amounts of suspect speaker data, there seems to be an increasingly large advantage of S-MAP

Thank Youll