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Ewald Enzinger, Peter Balazs 

Speaker Verification using Pole/Zero Estimates of 
Nasals  

The acoustics of nasals are an important source of speaker-
discriminating features. Nasal spectra contain poles and zeros depend-
ent upon nasal cavities which are complex static structures which vary 
from person to person. Nasal spectra may therefore have low within-
speaker and high between-speaker variability. This study applies a re-
cent pole-zero model estimation technique based on a logarithmic crite-
rion on nasal spectra to obtain pole/zero features for speaker verifica-
tion. The robustness against two mismatch conditions, Lombard speech 
and studio versus GSM transmission channel, is evaluated and com-
pared with an approach based on MFCC features. Furthermore, results 
of fusion of the nasal systems with a generic MFCC-based GMM-UBM 
speaker verification system are presented. 

Keywords: Pole/Zero model, nasals, speaker verification 

1. Introduction 

For an acoustic property to be useful for discriminating speakers, its between-
speaker variability has to be greater than its within-speaker variability. During the 
production of nasal stops, the lowered velum couples the nasal cavities with the 
vocal tract while a closure is formed by the lips (/m/), the tongue at the alveolar 
ridge (/n/) or the tongue dorsum at the lowered velum (/ŋ/). During the oral clo-
sure, the articulators essentially don't move, which is reflected in the relatively sta-
tionary spectrogram of the output sound pressure wave radiated from the nostrils. 
The relatively fixed posture of the vocal and nasal cavities provides the basis for 
the a-priori assumption of low within-speaker variability. 

Following the source-filter theory [1], the glottal pulse stream provides the 
excitation for the vocal tract which shapes the spectrum of the sound pressure 
wave due to its resonances. In nasals, the pathway created by the pharynx and 
the nasal cavity causes peaks in the spectrum corresponding to its resonances, 
while the closed oral cavity introduces peaks as well as depressions that are 
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caused by acoustical cancellations. Pairs of sinuses, the sphenoidal sinus, maxillary 
sinus, frontal sinus and the ethomoidal sinus, commonly called paranasal cavities, 
are located around the nasal cavity and are coupled with it, which causes addition-
al resonances and cancellations [2,3]. Due to their complicated structure and the 
asymmetric proportions of the left and right sinuses and passages of the nasal 
tract, which is split in two by the nasal septum, there exists substantial variation in 
the acoustic properties between different speakers [4,1]. Combined with the prop-
erty of low within-speaker variability, spectra of nasal stops are theoretically valua-
ble sources of speaker-discriminating features. 

The significance of explicit use of nasal segments was demonstrated in early 
studies on speaker identification [5,6]. In the domain of automatic speaker recog-
nition, work on the relative value of different sound classes and representations 
identified nasal stops as a particularly important source of speaker-discriminating 
features [7,8,9,10].  

In this paper we evaluate representations based on pole/zero model estimates 
based on a logarithmic criterion [11] on different mismatch conditions. This work 
represents an extension of our previous study [12]. In Section 2 we give a descrip-
tion of the pole/zero model estimation method. The speaker verification approach 
and the evaluation design chosen for this work are presented in Sections 3 and 4. 
We present the results including the effects of different mismatch conditions, com-
pared with MFCC features as baseline, in Section 5, and conclude with a discussion 
of these results in Section 6. 

The task of estimating the poles and zeroes of the  vocal / nasal tract can be 
seen as parallel to a modal analysis of the physical system of the vocal tract. In 
this paper we use the method in [11] which is based on a purely signal processing 
approach. This system identification approach is one step closer to the physical 
model compared to MFCC features, where the link to the physiological properties is 
unclear. In [23] it is shown that this pole/zero model can be linked to a two tube 
model of the vocal / nasal tract. 

In addition to having the conceptual advantages of being closer realted to the 
physical properties, we show in this paper that the proposed features outperforms 
or matches the performance of the standard MFCC features on nasal stop 
segments. 
 

2. Pole/Zero model estimation 

From a signal processing perspective, speech production can be modeled by a 
linear, slowly time-varying filter which incorporates the combined effect of the vo-
cal and/or nasal tract and the radiation at the lips or nostrils as well as the glottal 
pulse shape. The sampled speech signal is generated by an excitation signal, as-
sumed to be a train of impulses for voiced sounds, which is filtered by the speech 
production filter which is assumed to be LTI. The frequency response of this filter 
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is given in equation (1), which represents the pole-zero model, where n and m 
denote the orders of the numerator and denominator, respectively.  
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The estimation of the parameters of pole-zero models from speech has been 
thoroughly studied in the field of digital signal processing. Different approaches 
have been proposed which differ with respect to their robustness towards noise 
and other detrimental conditions present in the speech data. We use a recently 
published method [11] which we previously employed in obtaining positions of 
poles and zeros as features for speaker verification [12]. 

Motivated by the perception of amplitude by the human auditory system, the 
set of parameters θ consisting of the coefficients of the numerator and denomina-
tor polynomials of the pole/zero model is optimized by minimizing a logarithmic 
criterion (equation 2). 
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obtained by interpolating spectral peaks found within neighborhoods of multiples 
of f0. An initial estimate of the coefficients is obtained from a minimum-phase es-
timate of the frequency response by a weighted linear least-squares (WLLS) algo-
rithm [13]. The method optimizes the numerator and denominator coefficients di-
rectly in an iterative procedure. The details of the algorithm are described in 
[11,12]. Figure 1 shows an example of pole/zero model estimation obtained from 
an alveolar nasal stop (/n/). 

 

 
Figure 1. Pole/zero model estimate of an alveolar nasal stop (/n/). 
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3. Speaker verification system 

The Gaussian mixture model – universal background model (GMM-UBM) ap-
proach [14] is adopted in this work. We favored this technique over current state-
of-the-art speaker verification approaches such as GMM-SVM, JFA and i-vector 
based systems, as the benefits of these systems depend to a large extend on addi-
tional training data, which is often not easily available, e.g. in forensic applications. 
This work aims at evaluating the robustness of pole/zero estimates for speaker 
verification in the feature domain and does not employ channel or session com-
pensation methods in the score domain. 

The pole-zero model based features extracted from the nasal segments are 
given by the pole and zero frequencies, i.e. the angular positions of the locations 
of roots of the numerator and denominator polynomials evaluated in the frequency 
domain. The features are extracted using a shifted 30 ms Hamming window with 
90% overlap. No further pre-processing such as pre-emphasis is applied. An order 
of 11 was used for both the numerator and denominator polynomials in the model 
estimation. The locations of the roots of the polynomials were sorted in ascending 
order and the first three poles and zeros were selected as features, resulting in 6 
features per frame. No additional tracking procedures such as described in [15], 
which are commonly applied in formant tracking, were employed. 
 

 
Figure 2. Pole/zero frequencies estimated in an alveolar nasal stop (/n/). 
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Feature vectors are modeled by mixtures of Gaussian distributions (GMMs) 
with full covariance matrices, denoted by  

 

Miiiip ,...,1),,(: =Σ= µλ
 

(3) 

where iip µ,  and iΣ  represent the mixture weights, means and covariance matri-

ces. The universal background model (UBM), which models the distribution of the 
features in the reference population, is trained on the background data pooled 
across speakers. Its mixture weights, means and co-variances are estimated using 
the expectation-maximization (EM) algorithm. Actual speaker GMMs are generated 
by maximum a-posteriori (MAP) adaption of the UBM means. 

4. Evaluation 

The evaluation is based on data of 103 male German speakers from the 
Pool2010 corpus [16]. It contains recordings of read as well as spontaneous 
speech, both in a normal speaking style condition and a Lombard condition where 
the speakers were subjected to background noise played back over headphones. 
The Lombard effect is characterized by increased vocal effort while speaking in a 
noisy environment. It is highly variable between speakers, as they use different 
strategies for increasing intensity from normal to Lombard speech [17]. The 
speech data was recorded to disk as well as transmitted via a GSM channel. These 
recordings are used to test the robustness to transmission channel and speaking-
style mismatch. 

The procedure outlined in [12] was adopted to obtain segmentations of two 
nasal consonants /n/ and /m/ from the read speech portion of the dataset by per-
forming automatic phone-level alignment. The resulting segments were validated 
by listening and selecting only correctly labeled tokens. The features from nasal 
spectra were evaluated by splitting the recordings and comparing pole/zero esti-
mates from nasals in the first half of one condition against the segments in the 
second half of the other condition. 

The nasal stops /n/ and /m/ were modeled and evaluated separately. The da-
ta was split into a background set of 20 speakers for UBM training, a development 
set of 20 speakers, and a test set of the remaining 63 speakers. Scores were calcu-
lated for each pair of speakers in the development set data, resulting in 20 target 
and 380 non-target trials. These were then used to calculate weights for logistic-
regression calibration and fusion [18,19,20]. The optimal number of Gaussian mix-
tures and iterations for MAP adaptation was determined based on evaluation of the 
trials of the development set using the log-likelihood ratio cost (Cllr) metric [19]. 

Evaluations were performed on the test set using the same procedure, using 
the optimal number of Gaussian mixtures and iterations of MAP adaptation ob-
tained from the development set. The resulting scores from the test set were then 
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calibrated to log-likelihood ratios using the weights which have been calculated 
using the scores form the development set. 

As in the original approach [12], we use Mel frequency cepstral coefficients 
(MFCCs) as a baseline for comparison. 13 MFCCs are extracted using a shifted 30 
ms hamming window with 90% overlap. We used a configuration similar to HTK, 
i.e. 20 Mel filters, a pre-emphasis factor of 0.97 and -22 as the liftering exponent. 

Finally, the results from the individual nasal systems were fused with a gener-
ic MFCC-based GMM-UBM automatic speaker verification system. 13 Mel frequency 
cepstral coefficients (MFCCs) were extracted every 10 ms from the speech portion 
of each recording using a 20 ms hamming window. The feature vectors were mod-
eled by Gaussian mixture models with diagonal covariance matrices using 1024 
mixture components. MAP adaptation was used to create individual speaker mod-
els from the UBM. The system follows the same procedure as the nasal systems for 
calibration and fusion of the scores resulting from the test dataset, using the 
weights obtained from the development set to combine the generic automatic sys-
tem with both individual nasal systems. 

5. Results 

The evaluation results are presented in terms of the log-likelihood ratio cost 
(Cllr) metric as well as equal error rates (EER) and detection error trade-off plots 
obtained from the ROCCH procedure [21].  

First, the performance of the pole/zero features is assessed and compared 
with MFCC features for both nasal stops. Table 1 shows the baseline performance 
on same-session data without mismatch. The pole/zero features outperform the 
MFCC features both in terms of equal error rate and log-likelihood ratio cost, for 
both nasal stops individually as well as when fused together. Figure 3 shows the 
respective DET curves. 

 
Table 1. Performance of pole/zero and MFCC features for nasal stops. 

 Pole/zero frequencies MFCC 
 Cllr EER Cllr EER 

/m/ 0.424 12.6% 0.571 14.5% 
/n/ 0.153 3.7% 0.246 5.8% 

fused 0.150 3.6% 0.250 5.9% 
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Figure 3. DET plot of pole/zero and MFCC features on both nasal segments. 

 
In a comparison of trials with mismatch in vocal effort between free speech 

and Lombard condition, the performance of both features decreases, with MFCC 
displaying slightly lower EER and Cllr values (Table 2). 

 
Table 2. Performance of pole/zero and MFCC features in free vs. Lom-

bard condition mismatch. 
 Pole/zero frequencies MFCC 
 Cllr EER Cllr EER 

/m/ 0.708 22.5% 0.732 21.3% 
/n/ 0.560 12.6% 0.528 13.1% 

fused 0.547 12.9% 0.504 12.2% 
 
The mismatch in transmission channel, especially for GSM due to its inherent 

all-pole modeling of speech, is expected to affect the performance of pole/zero 
features. The evaluation results are given in Table 3. 

 
Table 3. Performance of pole/zero and MFCC features in studio  vs. GSM 

transmission channel mismatch. 
 Pole/zero frequencies MFCC 
 Cllr EER Cllr EER 

/m/ 0.949 36.4% 0.988 45.4% 
/n/ 1.109 40.4% 0.979 42.4% 

fused 1.054 39.8% 0.975 40.4% 



 8 

 
As can be seen, both features show very high error rates and Cllr values near 

or above unity. The EER values for the pole/zero feature based systems are lower 
than results from the MFCC based approach. 

Evaluation results for trials featuring both mismatch conditions combined are 
given in Table 4. As in the previous mismatch condition, the system performance is 
strongly decreased for both methods, with pole/zero features again providing 
somewhat lower EER values than MFCC features. 

 
Table 4. Performance of pole/zero and MFCC features in combined GSM 

transmission channel and Lombard condition mismatch. 
 Pole/zero frequencies MFCC 
 Cllr EER Cllr EER 

/m/ 0.969 39.3% 1.053 49.6% 
/n/ 0.982 39.2% 1.181 45.0% 

fused 0.966 39.1% 1.252 46.2% 
 
Finally, the pole/zero systems for both nasal stops /m/ and /n/ are fused with 

a generic automatic MFCC-based GMM-UBM speaker verification system which op-
erates on the whole speech portion of the recordings, indiscriminately including the 
nasal segments, using fusion weights determined from the development set.  
Table 5 shows the performance of the speaker verification system by itself as well 
as after fusion for both mismatch conditions as well as both combined. 

 
Table 5. Performance of pole/zero features fused with generic automatic 

MFCC based GMM-UBM speaker verification system under mismatch. 
 Generic  system Fused Pole/Zero /n/+/m/ 
 Cllr EER Cllr EER 

GSM 0.022 0.4% 0.024 0.3% 
Lombard 0.492 9.7% 0.371 8.5% 
combined 0.461 11.2% 0.483 11.0% 

 
A relatively small, but consistent increase in performance in terms of EER over 

the system baseline can be observed. Except for the mismatch between free 
speech and Lambert condition, Cllr values are not improved. A DET plot comparing 
the baseline and fused systems is given in Figure 4.  
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Figure 4. Generic automatic MFCC-based GMM-UBM speaker verification sys-

tem fused with both Pole/Zero feature based nasal systems for mismatch in trans-
mission channel, Lombard condition and both mismatch conditions combined. 

6. Discussion and conclusion 

In this paper, a new set of features consisting of pole and zero frequencies, 
i.e. the angular positions of the locations of roots of the numerator and denomina-
tor polynomials evaluated in the frequency domain, are obtained using a logarith-
mic based pole-zero model estimate of the speech production filter [11]. Theoreti-
cally, these features are advantageous for modeling the acoustics of nasal spectra 
and therefore provide a more straightforward interpretation with respect to models 
of the vocal and nasal tract [22,23].  

The resulting features are evaluated in a speaker verification task in two dif-
ferent mismatch conditions as well as both mismatch conditions combined. The 
proposed pole/zero features consistently outperform or match the performance of 
MFCC features on nasal stop segments. Compared to MFCCs, the dimensionality of 
the feature vectors is greatly reduced (6 pole/zero frequencies compared to 12-16 
MFCCs). This property is useful with respect to GMM training on a low number of 
nasal tokens.  

The loss in performance for the transmission channel mismatch condition can 
most readily be explained by the fact that the Adaptive Multi-Rate (AMR) codec 
used in GSM and UMTS mobile telephone networks uses order 10 linear prediction 
to encode the spectral envelope, which effectively removes zeros from the spec-
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trum. Due to this inherent all-pole modeling, the resulting estimates for the 
pole/zero frequencies are therefore expected to be greatly distorted. However, the 
MFCC features showed to be equally affected. Further tests using channel compen-
sation techniques are needed in order to assess whether the robustness of the 
pole/zero features to transmission channel mismatch can be improved. 

The fusion of pole/zero features with a generic automatic speaker verification 
system showed consistent, but only rather minor improvements in performance. 
These results should be taken as preliminary, as the automatic system used the 
whole speech portion of the recordings, which contain the same text read by every 
speaker. Further tests are required based on a more diverse and realistic database. 

Future work will investigate the use of a perceptual frequency scale (e.g. 
Bark) for pole/zero model estimation, as it is applied in Perceptual Linear Prediction 
(PLP). Furthermore, procedures for tracking poles and zeros to obtain formant and 
antiformant tracks [15] can be used to improve the robustness of the features. 
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