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Abstract—Time-frequency reassigned representations of vowel
segments have repeatedly been proposed as features for per-
forming forensic voice comparison (FVC). Combined with a
thresholding on the second-order mixed partial derivative of the
short-time Fourier transform (STFT) phase to reduce artifacts
and noise (pruning) such representations offer a sharpened
representation of AM/FM components in the speech signal. We
test the validity and reliability of FVC systems based on pruned
reassigned time-frequency representations extracted from man-
ually labeled /iau/ segments from a database of voice recordings
of 60 female Chinese speakers. Logistic-regression fusion was
used to combine the systems with a baseline MFCC GMM-UBM
system. Performance was assessed as degree of improvement
over the baseline system. Three recording channel conditions
were tested: high-quality v high-quality, mobile-to-landline v
mobile-to-landline, and mobile-to-landline v high-quality. For the
latter two conditions improvements over the baseline system were
observed in terms of validity, but with decreases in reliability.

I. INTRODUCTION

Time-frequency reassignment (TFR) of the short-term
Fourier transform (STFT) offers a sharpened representation
of impulses in the signal as well as instantaneous frequencies
of line components. The coefficients obtained in the STFT,
Xh(ω, T ), of a speech signal are spaced on the time-frequency
grid based on the length and overlap of the moving window
h(t). The channelized instantaneous frequency (CIF) and local
group delay (LGD) for each time-frequency bin are defined as
[1], [2]:

CIF(ω, T ) =
δ

δT
arg(Xh(ω, T )) (1)

LGD(ω, T ) =
δ

δω
arg(Xh(ω, T )) (2)

In the reassignment the STFT coefficients are moved from the
time and frequency center of the window in the STFT to the
center of gravity of the energy inside the window specified by
the CIF and the time shifted by the LGD. After time-frequency
reassignment the amplitudes can be thresholded to reduce
artifacts and noise using a pruning method [3] based on the
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second-order mixed partial derivative of the STFT phase, origi-
nally proposed by [4]. Dependent on the thresholding criterion,
quasi-sinusoidal components or impulses are retained, thereby
emphasizing vocal tract resonances or glottal pulsations.

Following interest in the use of time-frequency reassign-
ment methods for speech analysis (e.g. [1], [3], [5]), recent
publications proposed its use in forensic voice comparison
(FVC). Fulop and Disner [6], [7] suggest lower within- than
between-speaker variability in purely visual comparison of
pruned reassigned spectrograms obtained from short utterances
of speech with comparable voice quality. Recent presentation
of the method at the 165th meeting of the Acoustical Society of
America in Montréal [8] raised some concern among forensic
speech scientists due to reference by the authors to the spec-
trographic approach as well as the use of the term ‘voiceprint’.
This approach is based on a human expert making decisions
on this basis of visual inspection of spectrograms, and has a
controversial history going back to the 1960s (See [9]–[12] for
reviews of the scientific and legal debate); however, the output
of the procedure for creating pruned reassigned spectrograms
can also be used as the basis for quantitative measurements
which can then be used to train and test statistical models.
An automatic classification experiment based on quantitative
measurements instead of visual comparison presented in [8]
suggested that the approach had some potential but was based
on only six speakers.

In the present paper we assess the performance of
likelihood-ratio forensic-voice-comparison systems based on
pruned reassigned time-frequency representations. Two fea-
ture extraction approaches, one proposed in [8] and a novel
approach using the two-dimensional discrete cosine trans-
form, were evaluated using manually labelled tokens of /iau/
taken from a database of recordings of 60 female Chinese
speakers. Logistic-regression fusion was used to combine
the system with a baseline mel frequency cepstral coeffi-
cient (MFCC) Gaussian mixture model - universal back-
ground model (GMM-UBM) system [13]. Tests were made
in three different channel conditions: high-quality v high-
quality, mobile-to-landline v mobile-to-landline, and mobile-
to-landline v high-quality. Performance was assessed as degree



of improvement over the baseline system1.

II. METHODOLOGY

A. Data base

The evaluation is based on a database of two non-
contemporaneous voice recordings of each of 60 female
speakers of Standard Chinese (Mandarin/Putonghua) [18]. See
[19] for details of the data collection protocol. The speakers
were all first-language speakers of Standard Chinese from
northeastern China, and were aged from 23 to 45 (with most
being between 24 and 26). The recordings used were from
an information-exchange task conducted over the telephone.
The original recordings were approximately 10 minutes long.
The first and second recording sessions were separated by 2-3
weeks. High-quality recordings were made at 44 100 samples
per second 16 bit quantization using flat-frequency-response
lapel microphones (Sennheiser MKE 2 P-C) and an external
soundcard (Roland R© UA-25 EX), with one speaker on each
of the two recording channels.

In addition to the original high-quality recordings, degraded
sets of recordings were created by passing the high-quality
set of recordings through a mobile-to-landline transmission
channel. The details of the procedure are described in [14].
System performance was assessed in three channel conditions:

• high-quality v high-quality
• mobile-to-landline v mobile-to-landline
• mobile-to-landline v high-quality

The condition to the right was treated as the condition of the
suspect (known identity) recording, and the condition to the
left was treated as the condition for the offender (questioned
identity) recording.

Stressed tokens of /iau/ on tone 1 (“yao” one) were man-
ually located and marked using SOUNDLABELLER [20]. The
number of tokens per recording ranged between 8 and 20.

B. Forensic-voice-comparison systems

1) Baseline MFCC GMM-UBM system: The baseline
forensic-voice-comparison system extracted 16 mel-frequency-
cepstral-coefficients (MFCCs) every 10 ms over the entire
speech-active portion of each recording using a 20 ms wide
hamming window. Delta coefficient values were also calcu-
lated and included in the subsequent statistical modeling [21].
Feature warping [22] using a three second sliding window
was applied to the MFCCs and deltas before subsequent
modeling. A GMM-UBM model [13] was built using the
background data to train the background model. After tests
on the development set using different numbers of Gaussians,
the number of Gaussians used for testing was set to 1024.
Extraction of MFCCs and training of GMMs was performed
using an implementation provided by the Hidden Markov
Toolkit [23].

1This paper closely follows other papers we have written on extracting
information from acoustic signals ( [14]–[17]). We have replicated the
description of procedures used in earlier papers, in particular the data base
(Sections II-A and II-C) and the baseline system (Sections II-B1 and II-B3).

2) Time-frequency reassignment based systems: The eval-
uation of pruned reassigned time-frequency representations
(TFR) based features follows closely the feature extraction
procedures proposed in [8]. First the short-time Fourier trans-
form (STFT) was obtained from manually labelled tokens
of /iau/. A Kaiser window with α = 3 was applied to the
signal. The window length was set to approximately 90%
of one glottal cycle estimated from the average fundamental
frequency, which was determined under human supervision
using the algorithm in [24]. A step size of 2 samples was
used. Contrary to [8], where the vowel tokens were truncated
to 40 ms, we computed the STFT over the whole segment
duration.

Channelized instantaneous frequencies (CIF) and local
group delay (LGD) were calculated using an approximate
method based on the phase gradient of the STFT [1], [4]. The
phase derivatives of the STFT both in frequency and in time
were computed as the arguments of cross-spectral surfaces:

C(ω, T, ε) = Xh(ω, T +
ε

2
)X∗

h(ω, T −
ε

2
) (3)

L(ω, T, ε) = Xh(ω +
ε

2
, T )X∗

h(ω −
ε

2
, T ) (4)

The CIF and LGD were then obtained as:

CIF(ω, T ) ≈ 1

ε
arg(C(ω, T, ε)) (5)

LGD(ω, T ) ≈ 1

ε
arg(L(ω, T, ε)) (6)

The algorithmic details are described in [1] (we used a
MATLAB R© implementation provided by the authors2). The
time and frequency corrected STFT magnitudes were then
pruned based on the second-order mixed partial derivative of
the STFT phase [3]. The pruning thresholds for the mixed
partial derivative were set to < 0.1 to retain line components
and to between 0.75 and 1.25 to retain impulses [7]. The
normalized magnitudes were further thresholded at -80 dB.
Figure 1 shows an example of a pruned time-frequency-
reassigned spectrogram of a token of /iau/ in the database.
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Fig. 1. Example of a pruned reassigned spectrogram of /iau/.

In this paper we tested two approaches for obtaining
low-dimensional feature representations from pruned time-
frequency reassigned STFT magnitudes. The first approach

2Available at http://seanfulop.weebly.com/research.html



was originally proposed in [8]. The time-frequency reassigned
STFT magnitudes were discretized in time and frequency
using a coarse grid with 50 time and 85 frequency bins. The
bins were linearly spaced over time and frequencies between
100 and 3500 Hz. From this coarse grid the average was cal-
culated over the bins to obtain time- and frequency-averaged
features (TFR AVG). Figure 2 shows the discretized grid of
the example in Figure 1 as well as the time- and frequency-
averaged features. Principal component analysis was used to
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Fig. 2. Discretized pruned time-frequency reassigned distributions of the
example spectrogram given in Figure 1, along with the time- and frequency-
averaged features.

further reduce the dimensionality, retaining 10 time features
and 20 frequency features (The number of components was
selected empirically). We pooled all features extracted from
speakers in the background set (see Section II-C) and used
them to obtain a projection matrix from the eigenvectors of
the covariance matrix. The concatenated time- and frequency-
averaged feature vector had a dimension of 30.

The above characterization of the time-frequency represen-
tation is theoretically inadequate for speech segments that have
significant correlation over time and frequency, such as the
non-linear correlation in the triphthong /iau/. We therefore
propose a second approach based on the two-dimensional dis-
crete cosine transform (TFR DCT). First, the time-frequency
reassigned distributions were again discretized in time and
frequency. We used 85 frequency bins and set the number of
time bins to be equal to the segment duration in milliseconds.
Then, we computed the 2D DCT, from which we retained
the lower-order 7× 7 coefficients (The number of coefficients
was experimentally determined in tests on the development
set using 4 × 4, 5 × 5, 6 × 6, and 7 × 7 coefficients). The
coefficients were scaled according to the number of time
(N ) and frequency (M ) bins in the grid using a factor of
(1/
√
NM). After discarding the zeroth coefficient, we used

the remaining 48 coefficients as features in an FVC system.
Figure 3 shows the discretized grid of the example in Figure 1
as well as after reconstruction from the lower-order 7 × 7
coefficient values by applying the inverse 2D DCT.
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Fig. 3. Discretized representation of the example pruned reassigned spectro-
gram in Figure 1, as well as after reconstruction from the lower-order 7× 7
coefficient values by applying the inverse 2D DCT.

Two FVC systems were created based on each of the sets
of features. In both systems, extracted feature vectors were
modeled using the GMM-UBM approach [13]. A UBM with
diagonal covariance matrices was trained using feature vectors
from the set of background speakers pooled across both
recording sessions. Suspect GMMs were trained via maximum
a-posteriori (MAP) adaptation from the UBM. The optimal
number of Gaussians in the mixture (2, 4, 8, 16, 32, 64) were
empirically determined via tests using the development set. A
score was calculated as

score =
1

N

N∑
i=1

log

(
p(xi|λsuspect)
p(xi|λUBM )

)
, (7)

where xi is a feature vector, N is the number of tokens of
/iau/ in the offender data, and λsuspect and λUBM represent
the models of the suspect and the background, respectively. In
the following the FVC system based on time- and frequency
averages is abbreviated as TFR AVG and the FVC system based
on 2D DCT coefficients as TFR DCT.

3) MFCC-on-/iau/ system: A second MFCC-based system
was constructed which was identical to the baseline system
except that MFCCs and deltas were only calculated for the
portions of the recordings which fell within the /iau/ markers.
This system uses the same portions of the recordings as the
systems based on time-frequency reassignment and is thus a
diagnostic as to whether it is the selection of the /iau/ tokens
which is important or whether the time-frequency features also
contribute to system performance.

C. Use of background, development, and test sets

In the tests of FVC systems described below, data from the
first 20 speakers were used as background data, data from the



next 20 speakers were used as development data, and data
from the last 20 speakers were used as test data.

In both the development and test sets, every speaker’s
Session 1 recording (nominal offender recording) was com-
pared with their own Session 2 recording (nominal suspect
recording) for a same-speaker comparison and with every
other speaker’s Session 1 as well as Session 2 recording
(nominal suspect recordings) as different-speaker comparisons.
Both Session 1 and Session 2 recordings were included in
the background. The development set was used to calculate
scores which were then used to calculate weights for logistic-
regression calibration [25]–[27] which was applied to convert
the scores from the test set to likelihood ratios (calculations
were performed using [28], and [29]). Logistic regression was
also used to fuse the scores from multiple individual systems
and convert them to likelihood ratios [30].

III. RESULTS

The validity and reliability of the systems was evaluated
using the log likelihood-ratio cost (Cllr) as a metric of validity
(accuracy), and an estimate of the 95% credible interval (95%
CI) as a metric of reliability (precision) [31], [32] (Cllr

was calculated using the mean procedure [31, §3.3] and the
95%CI using the parametric procedure [32, §2.3]). Readers
familiar with automatic speaker recognition but not forensic
voice comparison should note that metrics such as equal
error rate (EER) and plots such as detection error trade-off
(DET) [33] are not presented here since they are based on
imposing hard thresholds on posterior probabilities and are
therefore incompatible with the likelihood-ratio framework for
the evaluation of forensic evidence [31], [34].

A. High-quality v high-quality recordings

Figure 4 shows the results of systems based on time- and
frequency averages (TFR AVG) and 2D DCTs (TFR DCT) of
reassigned time-frequency representations, and systems based
on MFCCs for the high-quality v high-quality tests. The
baseline system had a Cllr of 0.019 and a log10 95% CI
of 1.51. Of the fusions of both time-frequency-reassignment
based and the MFCC based systems with the baseline system,
no fused system outperformed the baseline system in both Cllr

and 95% CI.

B. Mobile-to-landline v mobile-to-landline recordings

Figure 5 shows the results for the mobile-to-landline v
mobile-to-landline tests. The baseline system had a Cllr of
0.219 and a log10 95% CI of 0.97. Fusion of the system
based on 2D DCT coefficients of reassigned time-frequency
representations (TFR DCT) showed some improvement in
validity (Cllr 0.192, −12.3%), but at a decrease in reliability
(log10 95% CI 1.071, +10.9%). Fusion of the MFCC-based
system with the baseline system resulted in nearly identical
values.
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Fig. 4. Measures for validity (Cllr) and reliability (log10 95% credible
interval) for systems based on time- and frequency averages (TFR AVG)
and 2D DCTs (TFR DCT) of reassigned time-frequency representations, and
MFCCs individually (red) as well as after fusion with the generic fully-
automatic baseline system (blue) (high-quality v high-quality recordings).
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Fig. 5. Measures for validity (Cllr) and reliability (log10 95% credible
interval) for systems based on time- and frequency averages (TFR AVG)
and 2D DCTs (TFR DCT) of reassigned time-frequency representations, and
MFCCs individually (red) as well as after fusion with the generic fully-
automatic baseline system (blue) (mobile-to-landline v mobile-to-landline
recordings).

C. Mobile-to-landline v high-quality recordings

Figure 6 shows the results for the mobile-to-landline v high-
quality tests. The baseline system had a Cllr of 0.152 and a
log10 95% CI of 1.50. Fusion of the system based on 2D DCT
coefficients of reassigned time-frequency representations (TFR
DCT) resulted in substantial improvement in validity (Cllr

0.120, −26.3%) at a loss in reliability (log10 95% CI 1.071,
+13.3%). Fusion of the MFCC-based system with the baseline
system showed similar improvement in Cllr with less increase
in the log10 95% CI, resulting in slightly better performance
than the fused TFR DCT system. Fusion of the system based



on time- and frequency averages (TFR AVG) did not improve
upon the baseline. Examination of Tippett plots of the baseline
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Fig. 6. Measures for validity (Cllr) and reliability (log10 95% credible in-
terval) for systems based on time- and frequency averages (TFR AVG) and 2D
DCTs (TFR DCT) of reassigned time-frequency representations, and MFCCs
individually (red) as well as after fusion with the generic fully-automatic
baseline system (blue) (mobile-to-landline v high-quality recordings).

system and after fusion with the system based on 2D DCTs
(TFR DCT) of reassigned time-frequency representations in
Figure 7 indicates that reduction in Cllr was primarily due
to large magnitude log likelihood ratios supporting consistent-
with-fact hypotheses getting even larger, while the proportion
of positive log likelihood ratios from different-speaker compar-
isons which contrary-to-fact gave greater support to the same-
speaker hypothesis than to the different-speaker hypothesis
was not reduced.

IV. DISCUSSION AND CONCLUSION

The present paper assessed the performance of forensic
voice comparison systems based on pruned reassigned time-
frequency representations proposed by [6], [7]. Two ap-
proaches for feature extraction, time- and frequency aver-
ages proposed in [8] (TFR AVG) and using the 2D discrete
cosine transform (TFR DCT) were computed from pruned
reassigned time-frequency representations of tokens of /iau/
in a database of recordings of 60 female speakers of Standard
Chinese. In both mobile-to-landline v high-quality and mobile-
to-landline v mobile-to-landline conditions substantial relative
improvements in validity were observed for the TFR DCT
system after fusion with the baseline system, while reliability
deteriorated. However, fusion of the MFCC-on-/iau/ system
with the baseline system showed similar or slightly better
performance than fusion of the TFR systems with the baseline
system, indicating that the features based on time-frequency
reassigned representations per se did not improve performance.

The approach for feature extraction based on the two-
dimensional discrete cosine transform showed better perfor-
mance than the original approach proposed in [8], which can
be explained by the substantial non-linear correlation present
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Fig. 7. Tippett plot of the baseline fully-automatic MFCC-based system (top)
and after fusion with the system based on 2D DCTs (TFR DCT) of reassigned
time-frequency representations (bottom) (mobile-to-landline v high-quality
recordings).

in the time-frequency distribution of /iau/ triphthongs. By
averaging over time and frequency bins this correlation is not
taken into account. Thus, useful speaker-specific information
is discarded.

However, the following caveats regarding these findings
should be borne in mind: In [8] the authors used tokens of
the vowel /æ/ from speakers of English, while this study
uses the Chinese triphthong /iau/. We only tested recordings
of female speakers using one speaking style. In forensic
casework the signals (both suspect and offender) are also
typically degraded by noise, reverberation, etc., and the effects
of such additional signal degradation were not tested. While
these findings can be seen as indication of performance under
conditions similar to the ones tested, we consider testing of
validity and reliability under conditions reflecting those of the
case under investigation using data drawn from the relevant
population as an essential principle for acceptable practice in



forensic voice comparison.
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