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Abstract
This paper reports the results of a first attempt at compen-
sating for variability in formant-trajectory representations due
to differences in suspect and offender recording conditions.
Formant-trajectory measurements were made on tokens of /iau/
in a database of high-quality and mobile-to-landline-transmitted
recordings of 60 female speakers of Chinese. Discrete cosine
transforms (DCT) were fitted to the formant trajectories. DCTs
were transformed using feature mapping and using canonical
linear discriminant functions. Transformed coefficients were
used to calculate likelihood ratios via the multivariate kernel
density formula. Application of the compensation procedures
did not lead to substantial improvement in validity or reliability.
Index Terms: Forensic voice comparison, formant trajectories,
mismatch compensation, likelihood ratios

1. Introduction
A common scenario in forensic-voice-comparison (FVC) case-
work is that a recording of the voice of an offender ob-
tained from a telephone call is being compared with a direct-
microphone recording of the voice of a suspect obtained dur-
ing a police interview. Transmission and recording systems can
have profound effects on the speech signal on these record-
ings, affecting the measurement of formant frequencies and
their trajectories. A number of studies have drawn atten-
tion to the effects of different telephone-transmission systems
on formant measurement, with average differences in formant
frequency measurements of up to 23% in landline and 29%
in mobile-telephone-transmitted speech (see [1] for a review).
When performing forensic voice comparison based on formant-
trajectory measurements on offender and suspect samples with
mismatched recording conditions, an increase in variability
in the measurements is expected. Assuming that the effect
on within-speaker variability is greater than that on between-
speaker variability, the overall ratio of between- and within-
speaker variability is expected to decrease, thereby negatively
affecting forensic-voice-comparison performance [2, p. 10]. A
study investigating the impact of mismatch in recording condi-
tions with respect to telephone transmission on the performance
of formant-trajectory-based forensic-voice-comparison systems
after fusion with a mel-frequency-cepstral-coefficient (MFCC)
Gaussian-mixture-model universal-background-model (GMM-
UBM) based system found substantial deterioration in system
validity as compared to matched high-quality recording con-
ditions, in particular for test conditions involving transmission
over mobile-telephone networks [1].

Given these results we would like to have a procedure to
compensate for the mismatch between the recording conditions

of the offender and the suspect recordings. To the best of
our knowledge no prior work has investigated compensation
for effects on formant or formant-trajectory measurement due
to recording-condition mismatch in forensic voice comparison.
Here we consider statistical approaches to counter increased
variability in formant-trajectory representations due to differ-
ences in suspect and offender recording conditions. Human-
supervised formant-trajectory measurements were made on to-
kens of /iau/ in high-quality and mobile-to-landline-transmitted
recordings. Discrete cosine transforms (DCT) were fitted to the
formant trajectories. Three methods for compensation were in-
vestigated:

1. mapping DCT coefficients in the offender condition
(mobile-to-landline) towards the distribution of DCT co-
efficients in the suspect condition (high-quality),

2. transforming DCT coefficients using canonical linear
discriminant functions [3], discarding dimensions that
are assumed to capture variability due to mismatched
conditions, and

3. combining both methods, first applying feature mapping
followed by canonical linear discriminant function trans-
formation.

The validity and reliability of a forensic-voice-comparison sys-
tem incorporating mismatch compensation are assessed and
compared with that of a baseline forensic-voice-comparison
system using the original DCT coefficients. In addition, all sys-
tems are fused with a MFCC GMM-UBM based system, and
the relative change in performance is assessed.

2. Methodology
2.1. Database

The data were extracted from a database of two non-
contemporaneous voice recordings of each of 60 female speak-
ers of Standard Chinese [4]. See [5] for details of the
data collection protocol. The recordings used were from an
information-exchange task conducted over the telephone: Each
of a pair of speakers received a “badly transmitted fax” in-
cluding some illegible information, and had to ask the other
speaker to provide them with the missing information. The orig-
inal recordings were approximately 10 minutes long. The first
and second recording sessions were separated by 2-3 weeks.
High-quality recordings were made at 44,100 samples per sec-
ond 16 bit quantization using flat-frequency-response lapel mi-
crophones (Sennheiser MKE 2 P-C) and an external soundcard
(Roland R© UA-25 EX), with one speaker on each of the two
recording channels. Stressed tokens of /iau/ on tone 1 were
manually located and marked.



In addition to the original high-quality recordings, degraded
sets of recordings were created by passing the high-quality set
of recordings through a mobile-to-landline transmission chan-
nel. The details of the procedure are described in [1]. The de-
graded recording was aligned with the high-quality recording
by sliding the degraded signal past the high-quality signal in
the time domain and calculating the correlation between the two
signals at each sample displacement. At the displacement with
the highest correlation, the degraded signal was truncated to the
same start and end points as the high-quality signal. Alignment
allowed the use of the same /iau/ markers as were created us-
ing the high-quality recordings. The high-quality condition was
treated as the condition of the suspect (known identity) record-
ing, and the mobile-to-landline condition was treated as the con-
dition for the offender (questioned identity) recording.

2.2. Formant-trajectory-based system

Human-supervised measurements of the trajectories of the first
three formants (F1, F2, and F3) of /iau/ tokens were made using
FORMANTMEASURER [6]. See [1, 7] for details on the pro-
cedure for human-supervised formant-trajectory measurement.
All tokens in all conditions were measured by the same supervi-
sor. Discrete cosine transforms (DCTs) were fitted to the mea-
sured formant trajectories of all the /iau/ tokens. On the basis
of tests made on the development set, the zeroth through fourth
DCT coefficient values from F2 and F3 were used as variables
in the present study. The trajectory of the first formant was ex-
cluded as it was expected to be greatly affected by the telephone
bandpass, therefore negatively affecting performance. This was
also confirmed in a preliminary test on the development set us-
ing trajectories of all three formants. Likelihood ratios were
calculated using the multivariate kernel density (MVKD) for-
mula [8]. These were then calibrated using logistic-regression
(see Section 2.4). This system is henceforth referred to as the
baseline system.

2.3. MFCC GMM-UBM system

The forensic-voice-comparison system extracted 16 mel-fre-
quency-cepstral-coefficients (MFCCs) every 10 ms over the en-
tire speech-active portion of each recording using a 20 ms wide
Hamming window. Delta coefficient values were calculated
and included in the statistical modelling [9]. Feature warping
[10] using Gaussian cumulative distribution function matching
with a 3 second sliding window was applied to the MFCCs
and deltas before subsequent modelling. A Gaussian mixture
model (GMM) with diagonal covariance matrices was trained
using the background data as a background model [11]. Sus-
pect speaker GMMs are adapted from the background model
using maximum a-posteriori (MAP) adaptation. Following tests
on the development set using a range of values, the number of
Gaussians was set to 256 and the number of MAP iterations was
set to 1. Training and adaptation of GMMs was performed us-
ing an implementation provided by the Hidden Markov Toolkit
[12]. A score was calculated as

score =
1

N

N∑
i=1

log

(
p(xi|λsuspect)

p(xi|λUBM)

)
, (1)

where xi is a MFCC feature vector, N is the number of feature
vectors in the offender data, and λsuspect and λUBM represent
the models of the suspect and the background, respectively. The
scores were then converted into likelihood ratios using logistic-
regression calibration (see Section 2.4)

2.4. Use of background, development, and test sets

In the tests of forensic-voice-comparison systems described be-
low, tokens from the first 20 speakers were used as background
data, tokens from the next 20 speakers were used as develop-
ment data, and tokens from the last 20 speakers were used as
test data. In both the development and test sets, every speaker’s
Session 1 recording (offender recording) was compared with
their own Session 2 recording (suspect recording) for a same-
speaker comparison and with every other speaker’s Session 1
as well as Session 2 recording (suspect recordings) as different-
speaker comparisons. The offender recordings were mobile-
to-landline transmitted recordings, and the suspect recordings
and the background were high-quality recordings. Both Session
1 and Session 2 recordings were included in the background.
The development set was used to calculate scores which were
then used to calculate weights for logistic-regression calibration
[13, 14, 15] which was applied to convert the scores from the
test set to likelihood ratios. Logistic regression was also used
to fuse the scores from multiple individual systems and convert
them to likelihood ratios [16]. In tests on the development set,
scores were calibrated in a cross-validation procedure.

3. Mismatch compensation
3.1. Method 1: Feature mapping

In the first method DCT coefficients obtained from formant-
trajectory measurements of /iau/ tokens of the offender sam-
ple (mobile-to-landline) are mapped towards the distribution of
DCT coefficients in the suspect condition (high-quality). Fig-
ure 1 illustrates the approach. The solid blue curve shows
the distribution of features in the mobile-to-landline condition.
These features were then shifted by an offset δ̄ (Eq. 2a) (blue
arrow) so that the mean of their distribution (dashed blue curve)
approximates that of their theoretical distribution in the high-
quality condition (red curve).

The offset values δ̄ are estimated using training data.
The training data consist of DCT coefficients obtained from
formant-trajectory measurements of /iau/ tokens in mobile-to-
landline and high-quality recordings of speakers in the back-
ground set. For each set of DCT coefficients of a /iau/ to-
ken in high-quality condition there exists another set of DCT
coefficients of the same time-aligned /iau/ token in mobile-to-
landline condition (see Section 2.1). To obtain δ̄ we first cal-
culated the average of the signed differences between each pair
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Figure 1: Example of feature mapping. The solid blue curve
shows the distributions of features of a speaker in mobile-to-
landline condition. The red curve shows their theoretical dis-
tribution in high-quality condition. The dashed blue line shows
the shifted distribution of mapped mobile-to-landline-condition
features.



of Ns high-quality and mobile-to-landline sets of DCT coeffi-
cients xj,suspect and xj,offender of a speaker s as a recording-
condition-dependent offset δs (Eq. 2c). Then, the offset δ̄ is
calculated as average of the per-speaker offsets δs of each of S
speakers in the background set (Eq. 2b).

xi,mapped =xi,offender + δ̄ (2a)

δ̄ =
1

S

S∑
s=1

δs (2b)

δs =
1

Ns

Ns∑
j=1

(xj,suspect − xj,offender) (2c)

Additional scaling by the ratio of the pooled variance estimates
of sets of DCT coefficients from high-quality and mobile-to-
landline formant-trajectory measurements resulted in deteriora-
tion in performance in tests on the development set as compared
to only shifting by δ̄.

3.2. Method 2: Canonical linear discriminant functions

Canonical linear discriminant functions (CLDF) are linear com-
binations of variables that are derived so that the groups in the
training data are maximally separated on the new dimensions
described by the functions [3]. A series of orthogonal functions
are derived with the first accounting for more of the between-
group variation than the second, the second accounting for more
of the between-group variation than the third, etc. Here, the
variables are DCT coefficients obtained from formant-trajectory
measurements and the groups to be separated are the speak-
ers. In the estimation of the CLDF coefficients both within-
and between-group variation are taken into account.

To estimate the CLDF coefficients we first obtained the
within- (Sw) and between-speaker (Sb) scatter matrices from
DCT coefficients, pooled from suspect and offender conditions,

Sw =

S∑
s=1

Ns∑
i=1

(xs,i − µs)(xs,i − µs)
T (3)

Sb =

S∑
s=1

(µs − µ)(µs − µ)T , (4)

where xs,i are the DCT coefficients obtained from formant-
trajectory measurements of a /iau/ token i of speaker s,

µs =
1

Ns

Ns∑
i=1

xs,i (5)

are the mean DCT coefficients for each speaker s, and µ are the
overall mean DCT coefficients. The between-to-within-class
variability is maximized by solving the generalized eigenvalue
problem:

Swv = λSbv (6)

A transformation matrix P composed of the eigenvectors v with
the highest k eigenvalues λ (sorted in descending order accord-
ing to their corresponding eigenvalue) is then used to trans-
form DCT coefficients, discarding dimensions that predomi-
nantly capture variability due to mismatched distances while
retaining those capturing speaker-specific information:

yi = Pxi (7)

Using a geometric analogy, we estimate a transformation from
the space of DCT coefficients to a lower-dimensional space of

canonical linear discriminant functions. Figure 2 gives a graph-
ical example of the method. The blue and red data points are
projected onto a line so that the two groups minimally overlap.
The orientation of the line is determined using the methods out-
lined above. In reality we had d dimensions projected to d − 1
canonical linear discriminant functions, but this example only
shows two dimensions and one canonical linear discriminant
function.
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Figure 2: Example of canonical linear discriminant function
transformation of data points of two speakers in two dimen-
sions.

The number of eigenvectors k = 9 to retain in the CLDF
transformation was experimentally set based on the lowest
pooled Cllr value obtained in tests on the development set.

Similar techniques are commonly applied for channel and
session compensation to reduce mismatch in i-vectors in state-
of-the-art automatic speaker recognition systems [17].

3.3. Method 3: Combination of feature mapping and CLDF

In the third method we first apply feature mapping by shifting
DCT coefficients in the offender condition towards the distribu-
tion of DCT coefficients in the suspect condition. As a second
step DCT coefficients are transformed using canonical linear
discriminant functions. The rationale for combining both ap-
proaches is that the CLDF transformation may be able to discard
dimensions representing residual within-speaker variability.

4. Results
The validity and reliability of the systems was evaluated using
the log likelihood-ratio cost (Cllr) as a metric of validity (accu-
racy), and an estimate of the 95% credible interval (95% CI) as
a metric of reliability (precision) [18, 19] (Cllr was calculated
using the mean procedure [18, §3.3] and the 95% CI using the
parametric procedure [19, §2.3]).

Figure 3 shows the results of the baseline system and sys-
tems incorporating mismatch compensation. All three methods
show improvements in validity. Methods 2 and 3 further in-
crease reliability as compared to the baseline system.

Figure 4 shows the results of the baseline system and sys-
tems incorporating mismatch compensation after fusion with
the MFCC GMM-UBM system. Method 3 shows minor im-
provements in both validity and reliability. Methods 1 and 2
show an increase in validity while reliability deteriorates.

5. Discussion & Conclusion
The present paper investigates three methods to compensate
for variability due to recording-condition mismatch in formant-
trajectory-based forensic voice comparison. The first method
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Figure 3: Measures for validity (Cllr) and reliability (log10 95%
CI) for systems based on the original DCT coefficients of F2 and
F3 (red circle) as well as after applying feature mapping (FM,
O), canonical linear discriminant function transform (CLDF,
B), and a combination of both FM and CLDF approaches (C).
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Figure 4: Measures for validity (Cllr) and reliability (log10 95%
CI) for the MFCC GMM–UBM system (black circle) and fu-
sion of the MFCC GMM–UBM system with systems based on
the original DCT coefficients of F2 and F3 (blue circle) as well
as after applying feature mapping (FM, O), canonical linear dis-
criminant function transform (CLDF, B), and a combination of
both FM and CLDF approaches (C).

maps DCT coefficients in the offender condition towards the
distribution of DCT coefficients in the suspect condition. The
second method transforms DCT coefficients using canonical
linear discriminant functions, discarding dimensions that are
assumed to capture variability due to mismatched conditions.
The third method combines both approaches, first applying fea-
ture mapping followed by canonical linear discriminant func-
tion transformation.

While improvements in both validity and reliability were
observed compared to the baseline system, none of the methods
achieved to substantially reduce the effects due to recording-
condition mismatch on system performance after fusion with
the MFCC GMM-UBM system. One potential reason for fail-
ing to find improvement could be that differences in formant-
trajectory measurements caused by the mobile-telephone trans-
mission channel cause non-linear changes in fitted DCT coeffi-
cients which could not be reduced by the proposed methods.
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